7.1 Angles of Polygons

Polygon Diagonal Segment that jo All polygons can be The sum of the For the	figure made of bins into _ angles of a triangle , multiply that l	segments		A C D
Polygon Interior A	ngles Theorem			
Sum of the	of the	angles of a	is	_
Sum of the	of the	angles of a		
Sum of the	of the	angles of a	18	
The sum of the measure	es of the interior ang	les of a convex polygon i	s 1440°. Classify the p	olygon by the number of sides.
Find $m \angle T$ $P \xrightarrow{Q}{93^{\circ}} 156^{\circ} \xrightarrow{85^{\circ}} R$ $T \xrightarrow{S}$				

Geometry 7.1				Name:					
Equilateral Polygon									
• All	congruent	$\langle \rangle$	δ	6 8					
Equiangular Polygo	n			χ					
• All	congruent								
Regular Polygon									
• All	and con	gruent							
Polygon Exterio	Polygon Exterior Angles Theorem								
Sum of the	of the	angles of a	polygon is						
What is the measure	e of an exterior angle o	f a regular pentagon?		•					
				2 3 1 5 4					
What is the measure	e of an interior angle o	f a regular pentagon?							

Assignment: 352 #1, 4, 6, 8, 10, 12, 14, 18, 22, 24, 25, 30, 32, 34, 36, 50, 51, 52, 56, 61 = 20 total

7.2 Properties of Parallelograms

Three vertices of $\Box DEFG$ are D(-1, 4), E(2, 3), and F(4, -2). Find the coordinates of vertex *G*.

				~			
←							→
			•				

Assignment: 360 #2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 26, 28, 30, 38, 47, 51, 52, 53, 54 = 20

7.3 Proving that a Quadrilateral is a Parallelogram

If we can show any of these things in a	_, then it is a
If opposite of a quad are	, then it is a parallelogram (definition of parallelogram)
If both pairs of opposite of a quad are	, then it is a parallelogram.
If both pairs of opposite of a quad are	, then it is a parallelogram.
If the of a quad each other	r, then it is a parallelogram.
If pair of opposite of a quad is bot	h and, then it is a parallelogram.

Show that quadrilateral *ABCD* is a parallelogram.

CONCEPT SUMMARY

For Your Notebook

Ways to Prove a Quadrilateral is a Parallelogram

 Show both pairs of opposite sides are parallel. (DEFINITION)
 Show both pairs of opposite sides are congruent. (THEOREM 8.7)
 Show both pairs of opposite angles are congruent. (THEOREM 8.8)
 Show one pair of opposite sides are congruent and parallel. (THEOREM 8.9)
 Show the diagonals bisect each other. (THEOREM 8.10)

Assignment: 369 #2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 34, 43, 50, 53, 54, 59, 61 = 20

7.4 Properties of Special Parallelograms

Assignment: 379 #2, 4, 8, 10, 12, 14, 16, 18, 22, 24, 30, 32, 36, 38, 48, 50, 52, 62, 64, 66, 88, 89, 92, 94, 99 = 25

7.5 Properties of Trapezoids and Kites
Trapezoid
Quadrilateral with exactly pair of sides
If the legs are, then the trapezoid is
If trapezoid, then each pair of base is
If trapezoid, then are
The converses are also true
Show that <i>ABCD</i> is a trapezoid. Then decide whether it is isosceles.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
If the trapezoid is isosceles and $m \angle HEF = 70^\circ$, find $m \angle EFG$, $m \angle FGH$, and $m \angle GHE$.
Midsegment of a Trapezoid midsegment
Segment connecting the of each
Midsegment Theorem for Trapezoids
The midsegment of a trapezoid is to the and its is the of the of the of the of the
In trapezoid <i>JKLM</i> , $\angle J$ and $\angle M$ are right angles, and <i>JK</i> = 9 cm. The length of the midsegment \overline{NP} of trapezoid <i>JKLM</i> is 12 cm. Find <i>ML</i> .

Assignment: 389 #2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 26, 28, 30, 39, 54, 58, 60, 63, 64 = 20

Name	
manne.	

Geometry Chapter 7 Review

1. What is the sum of the interior angles of a convex dodecagon?

Find the value of each variable in the parallelogram.

3

8.

Which theorem indicates that the quadrilateral is a parallelogram?

Give the most specific name for the quadrilateral. *Explain* your reasoning.

18.

Answers

- 1. 1800°
- 2. 118
- 3. 31
- 4. 71
- 5. 28,87
- 6. 10, 11
- 7. 8,65
- 8. 2
- 9. 3
- 10. $6\sqrt{5}$
- 11. 1
- 12. 130
- 13. 25
- 14. Both pairs of opposite angles are congruent.
- 15. Diagonals bisect each other.
- 16. Parallelogram
- 17. Trapezoid
- 18. Rhombus
- 19. Square
- 20. Isosceles Trapezoid
- 21. Rectangle